Search Light in Billiard Tables

نویسنده

  • G. GALPERIN
چکیده

We investigate whether a search light, S, illuminating a tiny angle (“cone”) with vertex A inside a bounded region Q ∈ IR with the mirror boundary ∂Q, will eventually illuminate the entire region Q. It is assumed that light rays hitting the corners of Q terminate. We prove that: (I) if Q = a circle or an ellipse, then either the entire Q or an annulus between two concentric circles/confocal ellipses (one of which is ∂Q) or the region between two confocal hyperbolas will be illuminated; (II) if Q = a square, or (III) if Q = a dispersing (Sinai) or semidespirsing billiards, then the entire region Q is will be illuminated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Integral Geometry of Liouville Billiard Tables

The notion of a Radon transform is introduced for completely integrable billiard tables. In the case of Liouville billiard tables of dimension 3 we prove that the Radon transform is one-to-one on the space of continuous functions K on the boundary which are invariant with respect to the corresponding group of symmetries. We prove also that the frequency map associated with a class of Liouville ...

متن کامل

Sizing Up Outer Billiard Tables

The outer billiard dynamical system models the motion of a particle around a compact domain, such as a planet orbiting a star. When considering outer billiards in hyperbolic space, an interesting problem is to determine precisely the conditions in which an orbiting particle breaks orbit and escapes to infinity. Past work has classified triangular and Penrose kite billiard tables according to wh...

متن کامل

A Few Remarks on Periodic Orbits for Planar Billiard Tables

I announce a solution of the conjecture about the measure of periodic points for planar billiard tables. The theorem says that if Ω ⊂ R is a compact domain with piecewise C boundary, then the set of periodic orbits for the billiard in Ω has measure zero. Here I outline a proof. A complete version will appear elsewhere.

متن کامل

Mixing Rate for Semi-dispersing Billiards with Non-compact Cusps

Since the seminal work of Sinai one studies chaotic properties of planar billiards tables. Among them is the study of decay of correlations for these tables. There are examples in the literature of tables with exponential and even polynomial decay. However, until now nothing is known about mixing properties for billiard tables with non-compact cusps. There is no consensual definition of mixing ...

متن کامل

Ergodicity of Billiards in Polygons with Pockets

The billiard in a polygon is not always ergodic and never K-mixing or Bernoulli. Here we consider billiard tables by attaching disks to each vertex of an arbitrary simply connected, convex polygon. We show that the billiard on such a table is ergodic, K-mixing and Bernoulli.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003